

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 7061-7064

Tetrahedron Letters

Synthesis and optical properties of conjugated *N*,*N*-dimethyl and thienyl end-capped 2,5-(arylethynyl)thiophene oligomer structures

J. Gonzalo Rodríguez,* Antonio Lafuente, Laura Rubio and Jorge Esquivias

Departamento de Química Orgánica, Universidad Autónoma, Cantoblanco, 28049-Madrid, Spain

Received 26 May 2004; revised 23 July 2004; accepted 27 July 2004 Available online 13 August 2004

Abstract—End-capped (*N*,*N*-dimethylaminophenyl) and 2'-thienylethynyl 2,5-thiophene oligomer structures were synthesized by heterocoupling between the terminal acetylenes such as: p-(*N*,*N*-dimethylaminophenyl)ethyne (**3**) [or 1-(p-(*N*,*N*-dimethylaminophenyl)-2-p-(ethynylphenyl)ethyne, **4**]; p-(β -ethenyl-2'-thienyl)phenylethyne (*E*-**9**) [or p-(β -ethynyl-2'-thienyl)phenylethyne, **11**], and 2,5-diiodothiophene, catalyzed by the Cl₂Pd(PPh₃)₂/CuI system, in good to excellent yields. The 2,5-di[(3',5'-di[(trimethylsilylethynyl)phenyl]_x-1-ethynyl]thiophene oligomers were prepared by heterocoupling between 3',5'-di[(trimethylsilylethynyl)phenyl]_x-1-ethyne (n = 0-2) terminal acetylenes and 2,5-diiodothiophene, in excellent yields. The terminal acetylenes were efficiently prepared by a specific protection-deprotection methodology. All the ethynylphenyl compounds obtained show fluorescence radiation emission, with a bathochromic shift of the wavelength that increases with the chain conjugation. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The insertion of thiophene in the linear ethynylphenyl conjugated chain, gives a higher electron delocalization to the molecule.¹ In general, the conjugated molecules, integrating the thiophene rings and the end-capped N,N-dimethylaminophenyl moiety, of precise length and constitution, exhibit high thermal stability^{2,3} and show intrinsic electronic properties such as: luminescence,⁴ redox,⁵ and charge transport.⁶ Moreover, the compounds are very stable, easy to functionalize, and soluble in most organic solvents.⁷ The improvement of electronic strength effect was obtained by varying the classical donor and acceptor groups on the conjugated system,⁸ and the extension of the conjugation between donor and acceptor moieties.^{9,10}

The 2-ethynyl and 2,5-di(ethynyl)thiophene units are good starting compounds for preparing end-capped thienyl oligomers and conjugated structures with angular geometry. The *para*-connection of two acetylene units guarantees the conjugated electronic communication. Thus, cyclic oligomers with nanometre diameter, integrated by 2,5-thienyl and *para*-phenylethynyl rings, can be prepared.¹¹

We now report the synthesis of conjugated 2,5-thiophene ring with the end-capped 2-ethenyl, 2-ethynyl thienyl and N,N-dimethylaminophenyl moieties, which are attractive and promising by their fluorescence properties.

2. Results and discussion

The syntheses of 2,5-di(phenylethynyl)thiophene structures with π -extended conjugation having the *N*,*N*dimethylamino donor group has been undertaken. Hence, the linear terminal acetylenes *p*-(*N*,*N*-dimethylaminophenyl)ethyne (**3**) and 1-(*p*-*N*,*N*-dimethylaminophenyl)-2-(*p*-ethynylphenyl) ethyne (**4**) were prepared, starting of *p*-(*N*,*N*-dimethylamino)iodobenzene (**1**).

Compound 1 was obtained by reductive amination with formaldehyde and sodium cyanoborohydride in acetic acid, in practically quantitative yield (mp 105–107 °C, Scheme 1). The heterocoupling reaction between the iodoarene 1 and 2-methyl-3-butyn-2-ol, in triethylamine at room temperature, catalyzed by the palladium/copper system, gives the propargyl derivative 2 in good yield

Keywords: End-capped (*N*,*N*-dimethylaminophenyl), thienyl and 1,3,5-tri(phenylethynyl) 2,5-thiophene oligomers; π -Extended conjugation; Sonogashira reaction.

^{*} Corresponding author. Tel.: +34 914974715; fax: +34 914973966; e-mail: gonzalo.rodriguez@uam.es

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.07.123

Scheme 1. Reagents and conditions: (i) NaCNBH₄, formaldehyde, AcOH; (ii) 2-methyl-3-butyn-2-ol, Cl₂Pd(PPh₃)₂, CuI, NEt₃; (iii) NaOH, toluene at reflux; (iv) 4-(*p*-iodophenyl)-2-methyl-3-butyn-2-ol, Cl₂Pd(PPh₃)₂, CuI, NEt₃.

(mp 71–73 °C, 85%).¹² Finally, compound **2** was treated with powdered sodium hydroxide in toluene at reflux temperature, giving the terminal acetylene **3** in practically quantitative yield (mp 51–53 °C).¹²

In the same way, the heterocoupling reaction between the acetylene **3** and 4-(p-iodophenyl)-2-methyl-3-butyn-2-ol, in the presence of the palladium/copper catalyst system, and successive deprotection with powdered sodium hydroxide, in toluene at reflux temperature, gave **4** as a white solid, mp 138–140 °C, in practically quantitative yield (Scheme 1).

Now, the terminal acetylenes 3 and 4 serve to prepare the end-capped (*N*,*N*-dimethylaminophenyl)-ethynyl-2,5-thiophene oligomers.

Thus, the syntheses of the 2,5-disubstituted thiophene conjugated compound **5**, was carried out by heterocoupling between the terminal acetylene **3** and 2,5-di(iodo)thiophene, in triethylamine at room temperature, in the presence of the palladium/copper catalyst system, providing 2,5-di(*p*-*N*,*N*-dimethylaminophenyl-ethynyl)thiophene (**5**), as a yellow solid, mp 181–183 °C, in excellent yield (98%, Scheme 2); 1,3-butadiyne **6** (2%), was also isolated as a yellow solid, mp 233–234 °C. Compound **6** results by oxidative homocoupling of the terminal acetylene **3** in the presence of the catalyst system.¹³. The same heterocoupling reaction between the terminal acetylene **3** and 2,5-dibromothiophene as the haloarene, only gives the 1,3-butadiyne derivative **6**.

The heterocoupling reaction between 2,5-di(iodo)thiophene and the terminal acetylene **4**, catalyzed by the palladium/copper system, in triethylamine at room temperature, gives 2,5-di[(p-N,N-dimethylaminophenylethynyl)-p-(phenylethynyl)]thiophene (7) as an orange solid, mp 227–230 °C, in excellent yield (98%, Scheme 2). The oxidative homocoupling product **8**, brown solid, mp > 260 °C, was detected in very low yield (<2%).

On the other hand, the end-capped thienyl conjugated chains were also prepared. The heterocoupling reaction between the thienylethenyl terminal acetylene (E)-9,¹⁴ (or the thienylethynyl terminal acetylene 11¹⁴) and 2,5-diiodothiophene, in triethylamine, in the presence of the palladium/copper catalyst system, afforded conjugated 2,5-thiophene structure 10, as a yellow solid, mp 261–262 °C (65%) (or 2,5-di(thienylethynyl)thiophene 12, yellow solid, mp 234–235 °C, 85%) in good yield (Scheme 3). Compounds 5, 7, 10 and 12 exhibit angular geometry with an interchain angle about 148°.¹⁵

Moreover, the heterocoupling between the conjugated terminal acetylenes 13–15 (trigonal–linear geometry) and 2,5-diiodothiophene was carried out.¹⁶ Hence, the heterocoupling between the terminal acetylene 13 (n = 1), (or 14, n = 2, or 15, n = 3) and 2,5-di(iodo)thiophene, in triethylamine at room temperature, catalyzed by the palladium/copper system, gives the conjugated compound 16, as a yellow solid, mp 139–140 °C (97%), in excellent yield, (or 17, yellow solid, mp 218–220 °C, 95%, or 18, yellow solid, mp 291–293 °C, 95%, Scheme 4).

The UV–visible spectra of the conjugated compounds 5 and 7, 10 and 12 and 16–18 show a bathochromic effect on the absorption wavelength and a strong increasing on

Scheme 2. Reagents: (i) 2,5-Diiodothiophene, Cl₂Pd(PPh₃)₂, CuI, NEt₃.

Scheme 3. Reagents: (i) 2,5-Diiodothiophene, Cl₂Pd(PPh₃)₂, CuI, NEt₃.

Scheme 4. Reagents: (i) 2,5-Diiodothiophene, Cl₂Pd(PPh₃)₂, CuI, NEt₃.

the molar extinction coefficient (ε), Table 1. Moreover the 2,5-thiophene ring included in the linear ethynylphenyl conjugated chain shows slightly higher ε values but an important decreasing of the quantum yield with respect to the linear 1,4-phenyl ring included in the conjugated ethynylphenyl chain.¹⁶

All the 2,5-disubstituted thiophene conjugated structures show fluorescence radiation emission, the wavelength and quantum yield are summarized in Table 1. Some considerations can be remarked: (a) There are a significant increase in the quantum yield of the radiation emission with the ethynylphenyl units in the chain, compounds 5 and 7 and 16–18; (b) There is an important increase in the quantum yield for the triple versus double bond connecting with the thiophene ring unit, compounds 12 and 10, respectively; (c) The ethynylphenyl chains show two fluorescence wavelength emission bands (compounds 12 and 16–18), while the 1,4-(N,N-

Table 1. Wavelengths for the first absorption and fluorescence emission maxima for the compounds 5, 7, 10, 12, 16, 17 and 18^{17} in CH₂Cl₂ at room temperature

Compd	UV–vis λ_{\max} (nm)	$\epsilon (M^{-1} cm^{-1})$	Fluorescence λ_{\max} (nm)	Φ_{f}
5	385	57,500	456	0.23 ^a
7	393	104,320	512	0.30 ^b
10	367	21,850	440	0.10^{a}
12	379	44,000	398, 423	0.34 ^a
16	355	46,900	391, 410	0.20^{a}
17	379	78,900	421, 447	0.42^{a}
18	377	113,000	429, 454	0.54^{a}

^a Fluorescence quantum yield was determined relative to 2-aminopyridine in 0.1 N H₂SO₄.

^b Fluorescence quantum yield was determined relative to quinine sulfate in 1 N H₂SO₄. dimethylaminophenyl)ethynyl and the ethenylphenylethynyl chains show a unique emission band (compounds 5, 7 and 10); (d) The emission wavelength bands for the 1,4-(N,N-dimethylaminophenyl) (5, 7) and for the 3,5-di(trimethylsilylethynyl)phenyl end-capped homologous exhibit a bathochromic shift for each ethynylphenyl unit in the conjugated chain, respectively.

Hence, new 2,5-di(ethynylphenyl)thiophene conjugated oligomers were satisfactorily obtained by means of the Sonogashira reaction using a 2,7-dihalothiophene (Br, I). The yields are excellent and the iodo derivative shows highest versatility. All the conjugated compounds show fluorescent properties.

Acknowledgements

We are indebted to CICYT of Spain (project PB97-0060).

References and notes

- (a) Abbotto, A.; Bradamante, S.; Facchetti, A.; Pagani, G. A. J. Org. Chem. **1997**, 62, 5755; (b) Wu, I.-Y.; Lin, J. T.; Li, Ch.-S.; Wang, W. C.; Huang, T. H.; Wen, Y. S.; Chow, T.; Tsai, Ch. *Tetrahedron* **1999**, 55, 13973.
- (a) Jen, A.; Marder, S. R. J. Org. Chem. 1996, 61, 2242; (b) Rao, V. P.; Jen, A. K. Y.; Cai, Y. J.Chem. Soc., Chem. Commun. 1996, 1237; (c) Jen, A. K. Y.; Rao, V. P.; Drost, K. J.; Wong, K. Y.; Cava, M. P. J. Chem. Soc., Chem. Commun. 1994, 2057.
- (a) Bunz, U. H. F. Chem. Rev. 2000, 100, 1605; (b) Irie, M. Chem. Rev. 2000, 100, 1685; (c) Delaire, J. A.; Nakatani, K. Chem. Rev. 2000, 100, 1817; (d) Roncali, J. J. Chim. Phys. Phys. Chim. Biol. 1998, 65, 1155.

- (a) Barbarella, G. Chem. Eur. J. 2002, 8, 5072; (b) Donat-Bouillud, A.; Levesque, I.; Tao, Y.; D'Iorio, M.; Beaupre, S.; Blondin, P.; Ranger, M.; Bouchard, J.; Leclerc, M. Chem. Mater. 2000, 12, 1931.
- (a) Nishiumi, T.; Higuchi, M.; Yamamoto, K. Macromolecules 2003, 36, 6325; (b) Sotzing, G. A.; Reddinger, J. L.; Reynolds, J. R.; Steel, P. J. J. Synth. Met. 1997, 84, 199.
- (a) Heeney, M.; Tierney, S.; Bailey, C.; McCulloch, I. *Eur. Pat. Appl.* **2004**, 26; (b) Worrall, C.; Heeney, M.; Tierney, S.; Farrand, L.; Giles, M.; Thompson, M.; Shkunow, M.; Sparrowe, D.; McCulloch, I. *Eur. Pat. Appl.* **2003**, 25.
- 7. Barbarella, G.; Zambianchi, M. Tetrahedron 1994, 50, 11249.
- (a) Abbotto, A.; Bradamante, S.; Facchetti, A.; Pagani, G. A. J. Org. Chem. **1997**, 62, 5755; (b) Cheng, L. T.; Tam, W.; Stevenson, S. H.; Merediith, G. R.; Rikken, G.; Marder, S. R. J. Phys. Chem. **1991**, 95, 10631.
- Cheng, L. T.; Tam, W.; Marder, S. R.; Stiegman, A. E.; Rikken, G.; Spangler, C. W. J. Phys. Chem. 1991, 95, 10643.
- 10. Rodríguez, J. G.; Tejedor, J. L. J. Org. Chem. 2002, 67, 7631.
- 11. Mayor, C.; Didschies, C. Angew. Chem., Int. Ed. 2003, 42, 3176.
- 12. Takalo, H.; Kankare, J.; Hanninen, E. Acta Chem. Scand. Ser. B: Org. Chem. Biochem. 1988, B42, 448.
- Rodriguez, J. G.; Lafuente, A.; Martin-Villamil, R.; Martinez-Alcazar, M. P. J. Phys. Org. Chem. 2001, 14, 859.

- 14. Rodríguez, J. G.; Lafuente, A.; Rubio, L. Tetrahedron Lett. 2004, 45, 5685.
- 15. Sheares, V.V.; Cai, R.; Stompel, S.; Promislow, J. H.; Dingemans, T. Report 1992; 4p.
- 16. Rodríguez, J. G.; Esquivias, J. *Tetrahedron Lett.* **2003**, *26*, 4831.
- 17. All new compounds were recrystallized in dichloromethane and give satisfactory spectral and elemental analyses. Selected spectral data are given (¹H NMR was registered in CDCl₃ at 300 MHz, and the chemical shifts are given in δ with TMS as an internal reference and constants coupling Jare given in Hz): Compound 5, ¹H NMR: 7.38 (d, 4H, J = 8.0 Hz; 7.05 (s, 2H); 6.64 (d, 4H, J = 8.0 Hz); 2.99 (s, 12H). Compound 7, ¹H NMR: 7.46 (br s, 8H); 7.43 (d, 4H, J = 8.0 Hz; 7.16 (s, 2H); 6.66 (d, 4H, J = 8.0 Hz); 3.00 (s, 12H). Compound 10, ¹H NMR: 7.45 (s, 8H); 7.35 (d, 1H, J = 4.8 Hz), 7.27 (d, 2H, J = 15.9 Hz); 7.15 (d, 2H, J = 3.8 Hz), 7.10 (s, 2H); 7.02 (dd, 2H, J = 4.8 and 3.8 Hz), 6.90 (d, 2H, J = 15.9 Hz). Compound 12, ¹H NMR: 7.49 (s, 8H); 7.32 (d, 2H, J = 4.8 Hz); 7.31 (d, 2H, *J* = 4.3 Hz); 7.18 (s, 2H); 7.03 (dd, 2H, *J* = 4.8 and 4.3 Hz). Compound **16**, ¹H NMR: 7.55 (d, 4H, J = 1.6 Hz); 7.53 (t, 2H, J = 1.6 Hz); 7.14 (s, 2H); 0.24 (s, 36H). Compound 17, ¹H NMR: 7.56 (d, 4H, J = 1.6 Hz); 7.53 (t, 2H, J = 1.6 Hz); 7.51 (d, 4H, J = 8.7 Hz); 7.46 (d, 4H, J = 8.7 Hz); 7.18 (s, 2H); 0.24 (s, 36H). Compound 18, ¹H NMR: 7.56 (d, 4H, *J* = 1.6Hz); 7.53 (t, 2H, *J* = 1.6Hz); 7.52 (br s, 8H); 7.51 (d, 4H, J = 8.9 Hz); 7.47 (d, 4H, J = 8.9 Hz); 7.18 (s, 2H); 0.25 (s, 36H).